Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong Dai, Jian-Bing Liu, Wei-Feng Tao, Ling Shao, Zhong Jin and Jian-Xin Fang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
daihong_2001@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.126$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2,3-Dimethylphenoxy)-1-(pyridin-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethanone

The title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$, a potent fungicidal agent, has been synthesized and its crystal structure determined. The dihedral angles between the planes of the pyridinyl and triazole rings, and between the substituted phenyl and triazole rings are $82.7(2)^{\circ}$ and $77.0(3)^{\circ}$, respectively.

Comment

It is well known that compounds containing the $1 H-1,2,4-$ triazole ring system are highly active as fungicides (Buchenauer, 1979), especially against the Basidiomycete and Ascomycete groups of fungi. These compounds are known to inhibit the biosynthesis of ergosterol in fungi (Hiroshi et al., 1995; Fang et al., 2003a,b). They are widely applied in the fields of medication and plant protection. In addition, compounds containing the pyridinyl ring are becoming more and more important in the development of medicines and fungicides, due to their excellent biological activities (Xiong et al., 2001; Zhao et al., 2004; Kurahashi et al., 1997; Wagner et al., 2000).

(I)

As a continuation of our interest in searching for novel 1 H -1,2,4-triazole compounds with potent fungicidal activities, we have sought to synthesize $1 H-1,2,4$-triazole compounds involving pyridinyl units. We report here the structure of 2-(2,3-dimethylphenoxy)-1-(pyridin-2-yl)-2-(1H-1,2,4-triazol-1yl)ethanone, (I).

Figure 1
View of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Received 9 September 2005 Accepted 22 September 2005 Online 28 September 2005

Fig. 1 shows the molecular structure of (I); it contains three planar ring systems, viz. the pyridinyl ring ($p 1$), the triazole ring ($p 2$) and the substituted phenyl ring ($p 3$). The dihedral angles between $p 1$ and $p 2$, and between $p 3$ and $p 2$ are 82.7 (2) ${ }^{\circ}$ and $77.0(3)^{\circ}$, respectively. The bond lengths and bond angles are unexceptional.

Experimental

2-Bromo-1-(pyridin-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethanone hydrobromide (5 mmol) was dissolved in acetone (15 ml). A mixture of 2,3dimethylphenol (6 mmol), $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{mmol})$ and acetone $(20 \mathrm{ml})$ was then added dropwise, while cooling on an ice-bath. The reaction mixture was stirred at room temperature for 2.5 h (monitored by TLC). The solution was filtered, and the filtrate was evaporated under reduced pressure. The residue was dissolved in 25 ml chloroform and washed with water $(3 \times 20 \mathrm{ml})$ and then adjusted to $\mathrm{pH}=7$ with 2 N aqueous NaOH . The organic layer was separated and washed with water $(3 \times 20 \mathrm{ml})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was separated by column chromatography on silica gel (200-300 mesh, with petroleum ether/ethyl acetate (4:1 v/v) as eluant, and recrystallized from petroleum ether/ethyl acetate $(1: 1 \mathrm{v} / \mathrm{v})$ to give a yellow crystal (yield 62%).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=308.34 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.700(2) \AA \\
& b=9.989(3) \AA \\
& c=11.230(3) \AA \\
& \alpha=102.490(4)^{\circ} \\
& \beta=108.484(4)^{\circ} \\
& \gamma=97.688(4)^{\circ} \\
& V=780.5(3) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.312 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1220 \\
& \quad \text { reflections } \\
& \theta=2.8-24.3^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Hexagonal fragment, yellow } \\
& 0.24 \times 0.18 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD area	2728 independent reflections
detector diffractometer	1738 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.019$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$S A D A B S$ (Sheldrick, 1996)	$h=-9 \rightarrow 8$
$T_{\min }=0.978, T_{\max }=0.991$	$k=-9 \rightarrow 11$
3976 measured reflections	$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.126$
$S=1.03$
2728 reflections
211 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0632 P)^{2}\right. \\
& +0.0431 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.004 \\
& \Delta \rho_{\text {max }}=0.22 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.045 \text { (6) }
\end{aligned}
$$

All H atoms were placed in calculated positions and were refined isotropically, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, using a riding model with $\mathrm{C}-$ $\mathrm{H}=0.93-0.98 \AA$.

Data collection: SMART (Bruker,1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 2
Packing diagram of the title compound.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (NNSFC) (No.29872022, 20172030) and the Key Project of the Chinese Ministry of Education (No.105046).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Buchenauer, H (1979). J. Plant. Dis. Protect. (Z. Pflanzenkr, Pflanzenschutz), 10, 341-345.
Fang, J., Jin, Z., Li, Z. \& Liu, W. J. (2003a). Organomet. Chem. 674, 1-9.
Fang, J., Jin, Z., Li, Z. \& Liu, W. J. (2003b). Appl. Organomet. Chem. 17, 145153.

Hiroshi, M., Koichi, K., Tomoharu, T. \& Naohito, O. (1995). Bioorg. Med. Chem. Lett. 5, 1479-1482.
Kurahashi, Y., Sawada, H. \& Sakuma, H. (1997). Eur. Patent No. 763530.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wagner, O., Wetterich, F., Eicken, K., Rack, M., Hamprecht, G., Lamm, G., Speakman, J. B., Lorenz, G., Ammermann, E. \& Strathmann, S. (2000). DE Patent No. 19531148.
Xiong, X. N., Jiang, B. \& Yang, C. G. (2001). Bioorg. Med. Chem. 9, 1773-1780.
Zhao, L. X., Moon, Y. S., Basnet, A. \& Kim, E. K. (2004). Bioorg. Med. Chem. Lett. 14, 1333-1337.

